

Hall Effect Sensor IC

in CMOS technology

Features:

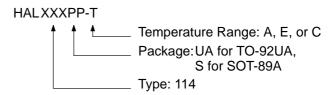
- operates from 4.5 V to 24 V supply voltage
- overvoltage and reverse-voltage protection
- short-circuit protected open-drain output switch
- operates with magnetic fields from DC to 20 kHz
- on-chip temperature compensation circuitry minimizes shifts in on and off points and hysteresis over temperature and supply voltage
- the decrease of magnetic flux density caused by rising temperature in the sensor system is compensated by a built-in negative temperature coefficient of hysteresis
- ideal sensor for ignition timing, anti-block brake systems and speed measurement in hostile automotive and industrial environments
- EMC corresponding to DIN 40839

Specifications

- switching type: unipolar
- output low with magnetic southpole on branded side of package
- output turns high if magnetic field is removed

Marking Code

Туре	Temperature Range						
	Α	E	С				
HAL114S HAL114UA	114A	114E	114C				


Operating Junction Temperature Range

A: $T_J = -40 \, ^{\circ}\text{C}$ to +170 $^{\circ}\text{C}$

E: $T_J = -40 \, ^{\circ}\text{C}$ to $+100 \, ^{\circ}\text{C}$

C: $T_{.1} = 0 \, ^{\circ}\text{C} \text{ to } +100 \, ^{\circ}\text{C}$

Designation of Hall Sensors

Example: HAL114UA-E

 \rightarrow Type: 114

 \rightarrow Package: TO-92UA

 \rightarrow Temperature Range: T_J = -40 °C to +100 °C

Solderability

Package SOT-89A: according to IEC68-2-58

- Package TO-92UA: according to IEC68-2-20

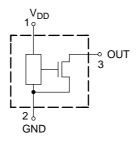


Fig. 1: Pin configuration

HAL 114

Functional Description

This Hall effect sensor is a monolithic integrated circuit that switches in response to magnetic fields. If a magnetic field with flux lines at right angles to the sensitive area is applied to the sensor, the biased Hall plate forces a Hall voltage proportional to this field. The Hall voltage is compared with the actual threshold level in the comparator. The temperature-dependent bias increases the supply voltage of the Hall plates and adjusts the switching points to the decreasing induction of magnets at higher temperatures. If the magnetic field exceeds the threshold levels, the open drain output switches to the appropriate state. The built-in hysteresis eliminates oscillation and provides switching behavior of output without bounce. The output is short-circuit protected by limiting high currents and by sensing excess temperature. Shunt protection devices clamp voltage peaks at the Output-Pin and VDD-Pin together with external series resistors. Reverse current is limited at the V_{DD} -Pin by an internal series resistor up to -15 V. No external reverse protection diode is needed at the V_{DD}-Pin for values ranging from 0 V to −15 V.

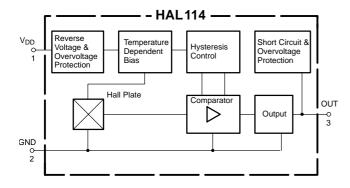


Fig. 2: HAL114 block diagram

Outline Dimensions

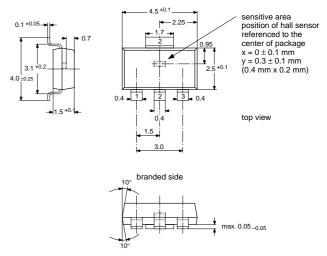


Fig. 3:
Plastic Small Outline Transistor Package (SOT-89A)
Weight approximately 0.04 g

Dimensions in mm

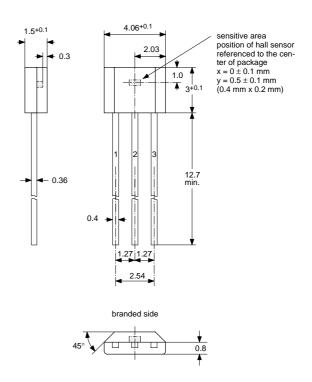


Fig. 4:
Plastic Transistor Single Outline Package (TO-92UA)
Weight approximately 0.12 g
Dimensions in mm

Absolute Maximum Ratings

Symbol	Parameter	Pin No.	Min.	Max.	Unit
V _{DD}	Supply Voltage	1	–15	28 ¹⁾	٧
-V _P	Test Voltage for Supply	1	-24 ²⁾	_	٧
-I _{DD}	Reverse Supply Current	1	_	50 ¹⁾	mA
I _{DDZ}	Supply Current through Protection Device	1	-300 ³⁾	300 ³⁾	mA
V _{OH}	Output High Voltage	3	_	28 ¹⁾	V
I _O	Continuous Output On Current	3	_	30	mA
I _{Omax}	Peak Output On Current	3	_	250	mA
l _{OZ}	Output Current through Protection Device	3	-300 ³⁾	300 ³⁾	mA
T _S	Storage Temperature Range		– 65	150	°C
TJ	Junction Temperature Range		-40 -40	150 170 ⁴⁾	°C

¹⁾ as long as T_Jmax is not exceeded

Stresses beyond those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions/Characteristics" of this specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Pin No.	Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage	1	4.5	_	24	V
I _O	Continuous Output On Current	3	0	_	20	mA
R _S	Series Resistor	1	_	_	270	Ω

4

with a 220 Ω series resistance at pin 1 corresponding to test circuit 1

 $^{^{3)}}$ t < 2 ms

⁴⁾ t<1000h

ADVANCE INFORMATION HAL114

Electrical Characteristics at T_J = -40 °C to +170 °C , V_{DD} = 4.5 V to 24 V, as not otherwise specified Typical Characteristics for T_J = 25 °C and V_{DD} = 12 V

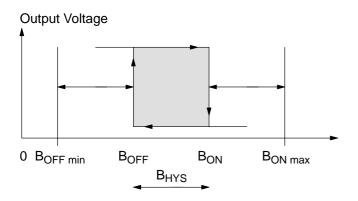
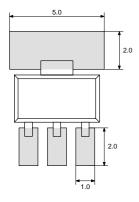
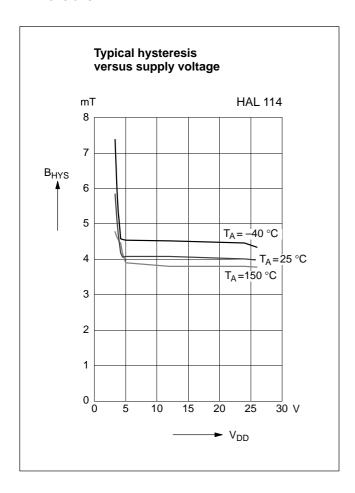
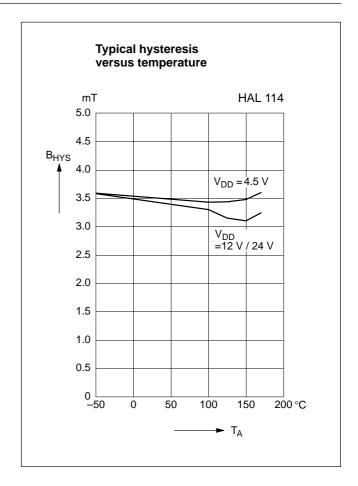
Symbol	Parameter	Pin No.	Min.	Тур.	Max.	Unit	Test Conditions
V _{OL}	Output Voltage	3	-	120	250	mV	I _O = 12.5 mA, T _J = 25 °C
V _{OL}	Output Voltage over Temperature Range	3	_	120	400	mV	I _O = 12.5 mA
V _{OL}	Output Voltage over Temperature Range	3	_	190	500	mV	I _{OL} = 20 mA
I _{OH}	Output Leakage Current	3	_	-	1	μΑ	B < B _{off} , V _{OH} = 24 V, T _J = 25 °C
I _{OH}	Output Leakage Current over Temperature Range	3	_	-	10	μА	B < B _{off} V _{OH} = 24 V, T _J < 150 °C
I _{DD}	Supply Current	1	6.6	8.3	11	mA	T _J = 25 °C
I _{DD}	Supply Current over Temperature Range	1	3.9	8.3	12	mA	
t _{en(O)}	Enable Time of Output after Setting of V _{DD}	3	_	6	10	μs	V _{DD} = 12 V
t _r	Output Rise Time	3	_	85	400	ns	V _{DD} = 12 V, RL = 820 Ohm, CL = 20 pF
t _f	Output Fall Time	3	_	60	400	ns	V _{DD} = 12 V, RL = 820 Ohm, CL = 20 pF
R _{thJSB} case SOT-89A	Thermal Resistance Junction to Substrate Backside		_	150	200	K/W	Fiberglass Substrate pad size see Fig. 6
R _{thJA} case TO-92UA	Thermal Resistance Junction to Soldering Point		-	150	200	K/W	Leads at ambient tempera- ture at a distance of 2 mm from case

Magnetic Characteristics at T $_J$ = $-40~^{\circ}C$ to +170 $^{\circ}C,~V_{DD}$ = 4.5 V to 24 V, Typical Characteristics for V_{DD} = 12 V

Magnetic flux density values of switching points.

Positive flux density values refer to the magnetic south pole at the branded side of the package.

Parameter	-40 °C			25 °C		100 °C			170 °C			Unit	
	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
On point B _{ON}	7.5	22.8	36.0	7.0	21.3	34.0	6.3	19.3	31.5	6.0	18.3	31.0	mT
Off point B _{OFF}	4.3	19.2	33.2	4.0	17.8	31.2	3.6	16.0	28.9	3.6	15.1	28.8	mT
Hysteresis B _{HYS}	2.8	3.6	4.3	2.8	3.5	4.2	2.6	3.3	4.0	2.2	3.2	3.9	mT

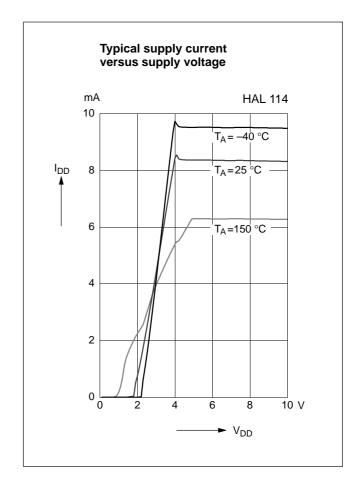
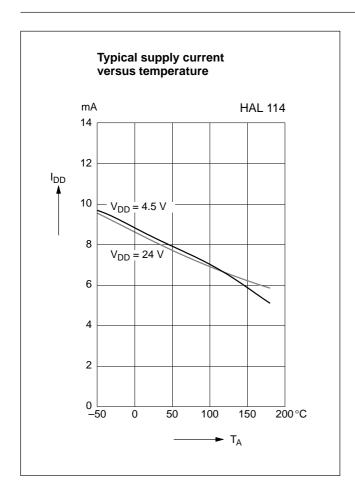
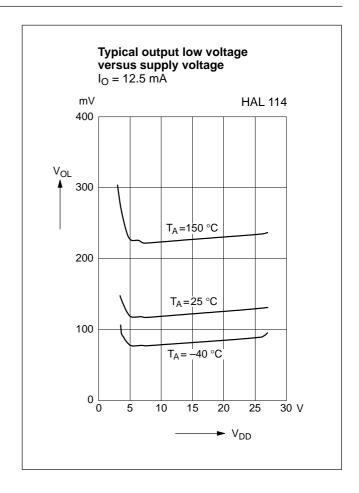
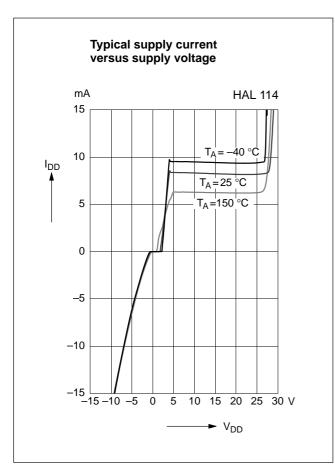
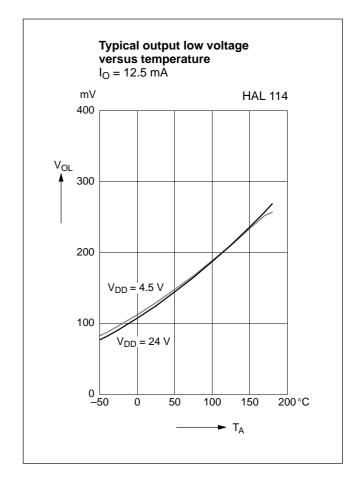

Fig. 5: Definition of switching points and hysteresis

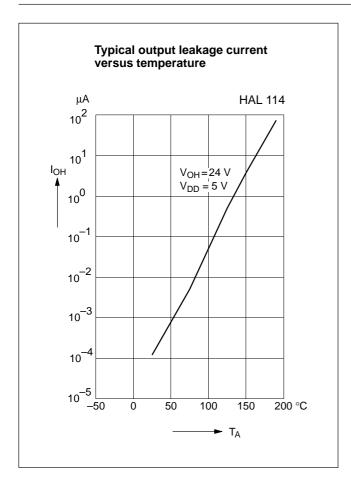
Fig. 6: Recommended pad size SOT-89A Dimensions in mm








6


HAL114

Application Note

For electromagnetic immunity, it is recommended to apply a 330 pF minimum capacitor between V_{DD} (pin 1) and Ground (pin 2).

For applications requiring robustness to conducted disturbances (transients), a 220 Ω series resistor to pin 1 and a 4.7 nF capacitor between V_{DD} (pin1) and Ground (pin 2) is recommended.

The series resistor and the capacitor should be placed as close as possible to the IC.

MICRONAS INTERMETALL GmbH Hans-Bunte-Strasse 19 D-79108 Freiburg (Germany) P.O. Box 840 D-79008 Freiburg (Germany) Tel. +49-761-517-0 Fax +49-761-517-2174

E-mail: docservice@intermetall.de Internet: http://www.intermetall.de

Printed in Germany Order No. 6251-456-1AI

Ambient Temperature

Due to the internal power dissipation, the temperature on the silicon chip (junction temperature T_J) is higher than the temperature outside the package (ambient temperature T_A).

$$T_J = T_A + \Delta T$$

At static conditions, the following equations are valid:

- for SOT-89A: $\Delta T = I_{DD} * V_{DD} * R_{thJSB}$ - for TO-92UA: $\Delta T = I_{DD} * V_{DD} * R_{thJA}$

For typical values, use the typical parameters. For worst case calculation, use the max. parameters for I_{DD} and R_{th} , and the max. value for V_{DD} from the application.

Test Circuits for Electromagnetic Compatibility Test pulses V_{EMC} corresponding to DIN 40839.

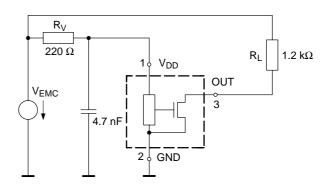


Fig. 7: Test circuit 1: test procedure for class C

Data Sheet History

1. Advance Information: "HAL114 Hall Effect Sensor IC", May 5, 1997, 6251-456-1AI: First release of the advance information.

All information and data contained in this data sheet are without any commitment, are not to be considered as an offer for conclusion of a contract nor shall they be construed as to create any liability. Any new issue of this data sheet invalidates previous issues. Product availability and delivery dates are exclusively subject to our respective order confirmation form; the same applies to orders based on development samples delivered. By this publication, MICRONAS INTERMETALL GmbH does not assume responsibility for patent infringements or other rights of third parties which may result from its use. Reprinting is generally permitted, indicating the source. However, our prior consent must be obtained in all cases.